Approximate Bayesian Computation (ABC) as flexible inference methods

Examples of applications from population genetics

Vítor Sousa

Population and Conservation Genetics, IGC
Centro de Biologia Ambiental, FCUL

vitorsousa@igc.gulbenkian.pt

FCUL, 19th March 2010
Sala 6.4.31, Bloco C6
Outline

- Motivation: inference in population genetics
- Principles of ABC
- ABC performance under “toy” examples
- ABC under “real” population genetics model-based inference problems
- Conclusions and future directions
Genetic Data

Allele frequencies in different points in space (populations)
Different regions on the genome (loci)
NEUTRAL markers
(DNA sequences, microsatellites, SNPs, etc.)

Can we infer the demographic history?
• Population sizes
• Population growth rates
• Migration rates
• Time of past events
• ...

Semino et al. (2000) Science
Demographic models in population genetics

We focus on demographic events as:

- Population size changes
- Admixture events
- Migration

Problems:

- Likelihood very complex, intractable in many models
- Many parameters, many nuisance parameters

\[
P(D|\theta) = \int_{\Omega} P(D|G') P(G'|\theta) dG
\]

- \(D\) - observed data (allele frequencies)
- \(\theta\) - demographic parameters (e.g. population size, migration rates, time events, etc.)
- \(G\) - genealogy of the sample
Inference of demographic history based on genetic data

- **Moment-based methods** (until 1990s)
 - Based on summary statistics
 - Very simple models and difficult to obtain credibility intervals

- **Full-likelihood** methods (since mid 1990s)
 - Based on allele frequency data
 - Computationally intensive – **MCMC and/or Importance sampling**
 - Only used for simple models, and limited datasets

- **Approximate** methods (since late 1990s)
 - Based on summary statistics of the allele frequencies
 - Computationally fast – **ABC rejection**
 - Flexible and easy to apply to complex models, and analysis of large datasets

Marjoram and Tavaré (2006) *Nat Rev Genet*
ABC as free-likelihood methods
Exact Rejection Algorithm

Do NOT require explicit likelihood
BUT, we need to be able to simulate data from the model M

B1. Generate θ^* from $\pi(\theta)$
B2. Generate D^* from $f(\cdot|\theta^*)$
B3. Accept θ^* if $D^* = D$; return to B1.

Prior $\pi(\theta)$
Simulation $f(\cdot|\theta^*)$
Joint distribution $\pi(\theta^*, D^*)$
Posterior $\pi(\theta|D)$
ABC as free-likelihood methods
Tolerance Rejection Algorithm

First approximation:
- Accept parameters only if distance is smaller than a given tolerance threshold

C1. Generate θ^* from $\pi(\theta)$
C2. Generate D^* from $f(\cdot | \theta^*)$
C3. Accept θ^* if $d(D^*, D) < \delta$; return to C1.

![Diagram showing the tolerance rejection algorithm](image)
ABC as free-likelihood methods
ABC Rejection Algorithm

Second approximation:
- Replace data D by summary statistics S

D1. Generate θ^* from $\pi(\theta)$
D2. Generate D^* from $f(\cdot|\theta^*)$
D3. Compute summary statistics S^* from D^*
D3. Accept θ^* if $d(S^*, S) < \delta$; return to D1.
ABC Summary

ABC provides independent samples from:

$$\pi(\theta | d(S^*, S) < \delta) \propto f(d(S^*, S) < \delta | \theta) \pi(\theta)$$

If S is a sufficient statistics, as $\delta \to 0$, and number of simulations $\to \infty$,

$$\pi(\theta | d(S^*, S) < \delta) = \pi(\theta | D)$$

Efficiency of ABC methods depends on:
- Characterization of the joint distribution (number of simulations)
- Summary statistics selected (sufficient?)
- Tolerance level
- Distance metric chosen
- Dimensionality – number of parameters and number of statistics
Approximate Bayesian Computation (ABC) as an exact sampling algorithm

Wilkinson (2008) showed that if the tolerance follows a distribution, instead of taking a fixed value, ABC rejection samples from the exact posterior.

\[\pi(\theta | d(S^*, S) < \delta, \delta \sim \pi(\delta)) \]

Post-Adjustment methods
Regression as conditional density estimation

Weighted local linear regression corrects for the discrepancy between S and S^*

For each accepted point, we have:
- Parameter value θ^i
- Summary statistic S_i
- Distance measure $(S_i - S(x^0))$

$$\theta^i = \alpha + (S_i - S(x^0))' \beta$$

Least-squares procedure

Beaumont et al. (2002) Genetics
ABC in “toy” examples

Estimate the probability of success of a Binomial sampling distribution

Observed data is $x = 204$, $n = 1000$
$X \sim Bin(1000, \theta)$
We want to estimate $P(\theta|X = x)$.
Prior $h(\theta) \sim Unif(0, 1) \sim Beta(1, 1)$
In this case, there is an analytical solution
$\pi(\theta|x) \sim Beta(x + 1, n - x + 1)$

probability

density
ABC in “toy” examples
Estimate the probability of success of a Binomial sampling distribution

ABC rejection

1. Sample param p^* values from prior
2. Simulate data x^* with param
3. Compute a distance metric $d(x^*, x) = \text{abs}(x^* - x)$
4. Accept param p^* that generated datasets with distance smaller than a given tolerance level

Tolerance level defined as a quantile of the distance distribution

Joint distribution obtained with 10^5 simulations

Observed $x = 204$
ABC in “toy” examples
Estimate the probability of success of a Binomial sampling distribution

ABC rejection

- Effect of tolerance level
 - As the tolerance level tends to 1, we sample from the prior
 - Decreasing tolerance increases the quality of the approximation to the correct posterior
ABC in "toy" examples
Estimate the probability of success of a Binomial sampling distribution

ABC rejection
- Effect of tolerance level and number of simulations

- Increasing the number of simulations increases the quality of the approximation
ABC in “toy” examples
Estimate the probability of success of a Binomial sampling distribution

ABC regression

1. Weight the points according to the distance
2. Least-square estimation of \(a, b \)
 \[p_{\text{param}} = a + b \times x_{\text{sumstat}} \]
3. Project points along line of observed data (zero distance)

Joint distribution obtained with \(10^5 \) simulations

Observed \(x = 204 \)
ABC in “toy” examples
Estimate the probability of success of a Binomial sampling distribution

ABC regression

- The regression adjustment decreases the dependency on the number of simulations and tolerance level
Summary

In practice, in “toy” examples...

- With reasonable number of simulations good approximations
- Sufficient statistics leads to good approximations
- Applying the regression reduces dependence on the tolerance

What happens when dealing with complex models?
Estimate Admixture with genetic data

\[p_1 \cdot 1 - p_1 = T/N \]

\[t_1 = T/N_1 \]
\[t_h = T/N_h \]
\[t_2 = T/N_2 \]

Past

Population 1

Population H

Population 2

Sample 1

Sample H

Sample 2

Allele A:
- Population 1: 40
- Population H: 30
- Population 2: 35

Allele B:
- Population 1: 10
- Population H: 20
- Population 2: 15
Approximate Bayesian Computation (ABC)

Sample θ^* from the prior
Simulate data with parameter θ^*
Compute the summary statistics of simulated data S_{sim}
Compute a distance between $d = d(S_{sim}, S_{obs})$
Accept the parameter values if $d < \delta$

ABC in population genetics

How to choose summary statistics?

“The choice of summary statistics is crucial. There is scope for research on practical methods for identifying approximately sufficient statistics”

Marjoram et al. 2003

How informative (or redundant) are the summary statistics?

“Because of the curse of dimensionality there are limitations to the number of summary statistics that can be handled with a reasonable number of simulations”

Beaumont et al. 2002

What is the relative performance compared with a full-likelihood method?

<table>
<thead>
<tr>
<th>Full-likelihood</th>
<th>ABC sumstat</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\theta \mid D)$</td>
<td>$P(\theta \mid d(S_{\text{obs}}, S_{\text{sim}}) < \delta)$</td>
</tr>
<tr>
<td>$D = \text{allele frequency data}$</td>
<td>$S = \text{summary statistics}$</td>
</tr>
</tbody>
</table>
Full-allelic distribution using ABC framework

Full-likelihood

\[P(\theta | D) \]

\(D = \text{allele frequency data} \)

ABC allele freq

\[P(\theta | d(D_{\text{obs}}, D_{\text{sim}}) < \delta) \]

\(D = \text{allele frequency data} \)

If \(N_{\text{sim}} \to \infty \) and \(\delta \to 0 \), then the ABC posterior \(\to \) full-likelihood

However, the problem may become highly dimensional

Sousa et al. (2009) Genetics
Full-likelihood vs ABC

10 biallelic loci, \(t_i = 0.01 \)

- Posterior distributions of ABC approximate the results obtained with LEA
- Posterior distributions of ABC allele freq similar to ABC sumstat

Sousa et al. (2009) Genetics
Effect of tolerance and Regression

Relative Root Mean Square Error (RRMSE) for point estimates p_1

- **ABC returns point estimates similar to LEA**
 - Rejection: error decreases with tolerance
 - Regression: error does not depend on tolerance

10 loci drift=0.001
100x106 simulations

- Rejection
- Regression
- LEA
- ABC sumstat
- ABC all freq EUCLIDEAN
- ABC all freq GST
Summary

• ABC provide reasonable estimates, although posteriors with higher variance than with full-likelihood

• ABC computationally faster than MCMC-based methods

• Difficult to assess “informative” summary statistics

ABC vs Full-likelihood (LEA)
 - ABC approximate the results obtained with LEA
 - Rejection step returns good point estimates

ABC with allele frequencies vs ABC sumstat
 - ABC without sumstat and ABC sumstat provide similar results
Future Directions

Improve the Rejection step:
- Sequential Approaches
- MCMC-ABC without likelihoods
- PCA on the allele frequencies to reduce dimensionality – independent sufficient statistics?

Improve the Regression step:
- Non-linear models for the regression
Conclusions

• ADVANTAGES:
 • ABC provides independent approximate samples from the posterior, instead of correlated samples as in MCMC methods
 • Easy to create databases with the simulated data and corresponding parameters
 • allow analysis of multiple observations, useful to perform simulation studies
 • Possibility to use statistics found in the literature without the need to have the original dataset: Meta-analysis

• DISADVANTAGES:
 • Difficult to select the summary statistics
 • In some cases difficult to “fine tune” the number of simulations, tolerance level, etc.
Other ABC approaches

ABC-MCMC with Metropolis-Hastings algorithm

Algorithm 6. ABC-MCMC algorithm:

1. **Initialisation:** Pick $\theta^{(0)}$ from an arbitrary distribution.

2. At iteration $i > 1$

 Generate θ' from the proposal $q(\cdot|\theta^{(i)})$ and x' from $f(\cdot|\theta')$,

 Calculate the ratio $r(\theta^{(i)}, \theta') = \min \left(1, \frac{q(\theta^{(i)}|\theta')}{{\pi(\theta')}\pi(\theta^{(i)})} I\{\rho(S(x^0), S(x')) < \epsilon\} \right)$

 Accept θ' with probability $r(\theta^{(i)}, \theta')$, otherwise stay at $\theta^{(i)}$. Go to 2.

Marjoram et al. (2003) PNAS; Bortot et al. (2008)

Sequential ABC approaches
Population Monte Carlo ABC

Beaumont et al. (2010) Biometrika; Sisson et al. (2007) PNAS
Post-adjustment approaches
Non-linear regressions

LocL – Local linear regression
NCH – Non-linear conditional heteroscedastic model
ANCH – Adaptive version of NCH

- Non-linear regression decrease the dependence in the tolerance
- Decrease computational effort

Blum and François (2008) ArXiv
Acknowledgements

- Lounès Chikhi (PCG Group/CNRS)
- Manuela Coelho (FCUL, Univ. Lisbon)

- Mark Beaumont (Reading Univ., UK)
- Nuno Sepúlveda (IGC)
- Pedro Fernandes (High Performance Computing Centre, IGC)
- Bárbara Parreira (PCG group, IGC)
- João Lopes (Univ. Reading, UK)
- Franck Jabot (Univ. Paul Sabatier, France)
- Aude Grelaud (Rutgers Univ, USA)
“We are interested in inference methods for complex problems, and we welcome and invite everyone who wants to discuss these problems with us...”

Lounès Chikhi (PI)
chikhi@cict.fr
www.igc.gulbenkian.pt
References

ABC principles:
Marjoram et al. (2003) MCMC without likelihoods PNAS 100: 15324-15328

ABC regression step:

ABC exact approximation:
Wilkinson (2008) ABC gives exact results under the assumption of sampling error. ArXiv

ABC-MCMC
Marjoram et al. (2003) MCMC without likelihoods PNAS 100: 15324-15328

Other
Sisson et al. (2007) Sequential Monte Carlo without likelihoods PNAS 104: 1760-1765
Bortot et al. (2008) Inference for stereological extremes. ArXiv 0811.3355
R script to estimate probability of a binomial

```r
# Estimate the posterior distribution of a proportion
library(locfit)
real_param <- 0.2
n <- 1000
# Observed sumstat
doobs <- rbinom(1,n,real_param)
# Repeat varying the number of simulations performed
nsim <- c(10000,100000)
for(j in 1:length(nsim)) {
  # ABC rejection scheme
  if(nsim[j] <= 1000) {
    tol <- c(0.1, 0.5, 0.9)
    col.tol <- c(3,5,2)
  } else {
    tol <- c(0.01, 0.1, 0.5, 0.9)
    col.tol <- c(4,5,2)
  }
  # Uniform prior on theta
  param <- runif(nsim[j], 0, 1)
  # plot the uniform distribution
  # ABC rejection scheme
  sumstat <- rbinom(nsim[j], n, param)
  # Compute the distance between observed and simulated data
dst <- abs(sumstat-doobs)
  # obtain the tolerance distance
tol_dst <- quantile(dst, tol)
  # Plot the posterior
  hist(param[dst<tol_dst], prob=T, xlim=c(0,1), main=paste("Regression nsim ",nsim[j]), xlab=param, ylab="density")
  for(i in 1:length(tol)) {
    # weights according to the distance
    regwt <- 1-dst[dst<=tol_dst[i]]^2
    if(sum(is.nan(regwt))>0) regwt <- rep.int(1,sum(dst<=tol_dst[i]))
    # perform the regression step
    fit <- lm(param[dst<=tol_dst[i]]~sumstat[dst<=tol_dst[i]], weights=regwt)
    # obtain the predicted param value for the observed data
    predmean <- sum(coef(fit) * c(1, doobs), na.rm=T)
    # add the residuals to the expected values (transpose the points)
    post <- predmean + residuals(fit)
  }
  # Plot
  plot(locfit(~post, xlab="post", tol=100), alpha=0.99, col=col.tol[1], lty=1)
  legend(0.15, 25, paste("obs=", doobs, " nout of ", n))
}
```